Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(3): e25129, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38333780

RESUMEN

Willow trees (Salix spp.) exhibit remarkable genetic and phenotypic diversity, yielding a broad spectrum of bioactive compounds, notably valuable phenolic compounds such as condensed tannins (phenolic polymers), flavonoids, salicylic glucosides, and phenolic compounds. These enhance the economic value of willow crops and make them suitable for circular bioeconomy. Phenolic compounds known for their diverse applications as antioxidants, antimicrobial agents, pharmaceuticals, nutraceuticals and antiseptics and more, find a natural source in willow. This study aimed to elucidate the composition of 12 flavonoids and salicylic acid in different segments of five organic winter dormant willow species (S. daphnoides, S. fragilis, S. dasyclados, S. viminalis, and S. dasyclados x viminalis) using quantitative analysis and providing valuable insights into their high-value phenolic compounds. Separation into buds, wood and bark segments allowed for a precise characterization of the location of certain phenolic compounds and quantification using LC-MS/MS techniques. LC-MS/MS is an analytical technique known for its increased sensitivity and chromatographic precision. Among the findings, catechin emerged as the predominant flavan-3-ol in all Salix species, with the highest concentration in the buds of Salix viminalis (7.26 mg/g DM). Naringenin exhibited species-specific variations, with S. dasyclados and S. viminalis recording the highest levels. Salicylic acid concentrations peaked in S. dasyclados (5.38 mg/g DM) and S. daphnoides (4.43 mg/g DM), particularly within the bark. When evaluating other individual flavonoids and total polyphenol content (TPC), disparities between buds, bark, and wood became evident, with wood consistently displaying the lowest content. Notably, the higher concentration of polyphenolic compounds in willow bark can be attributed to its susceptibility to external threats and its role as a robust defense mechanism against pathogens and herbivores. This study underscores the significance of diverse willow species as a source of high-value phenolic compounds, distributed differentially across plant parts and species. This knowledge holds promise for their potential applications in the circular bioeconomy.

2.
J Chromatogr A ; 1705: 464139, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37352692

RESUMEN

Willow (Salix spp.) is gaining an increasing interest as a fast-growing tree with high biomass yield from low agricultural inputs, which contains potentially bioactive compounds. The present work aimed to develop a high-yield extraction procedure combined with robust, sensitive and fast microLiquid Chromatography-Triple Quadrupole Mass Spectrometry (LC-MS/MS) based method for comprehensively quantifying flavonoids and salicylic acid in the bark of Salix spp. We have investigated the effect of freeze- and oven-drying procedures and five extraction solvents on the yield of individual flavonoid and salicylic acid when performing classical solid-liquid extraction. The freeze-drying was the best drying procedure for preserving monomeric and polymeric flavan-3-ols, whereas other flavonoids were less affected. Salicylic acid was not affected by the drying procedures. The best extraction solvent in terms of the yield of individual flavonoid among the tested solvents in this study was the combination of methanol acidified with 1% hydrochloric acid. LC-MS/MS method has shown a high recovery percentage (≥80%), good precision and overall robustness.


Asunto(s)
Flavonoides , Salix , Flavonoides/análisis , Solventes/química , Cromatografía Liquida , Salix/química , Ácido Salicílico/análisis , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida de Alta Presión
3.
Nutrients ; 13(5)2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-34066330

RESUMEN

Consumption of fructose has been associated with a higher risk of developing obesity and metabolic syndrome (MetS). The aim of this study was to examine the long-term effects of fructose compared to starch from high-amylose maize starch (HiMaize) at ad libitum feeding in a juvenile Göttingen Minipig model with 20% of the diet provided as fructose as a high-risk diet (HR, n = 15) and 20% as HiMaize as a lower-risk control diet (LR, n = 15). The intake of metabolizable energy was on average similar (p = 0.11) among diets despite increased levels of the satiety hormone PYY measured in plasma (p = 0.0005) of the LR pigs. However, after over 20 weeks of ad libitum feeding, no difference between diets was observed in daily weight gain (p = 0.103), and a difference in BW was observed only at the end of the experiment. The ad libitum feeding promoted an obese phenotype over time in both groups with increased plasma levels of glucose (p = 0.005), fructosamine (p < 0.001), insulin (p = 0.03), and HOMA-IR (p = 0.02), whereas the clinical markers of dyslipidemia were unaffected. When compared to the LR diet, fructose did not accelerate the progression of MetS associated parameters and largely failed to change markers that indicate a stimulated de novo lipogenesis.


Asunto(s)
Dieta de Carga de Carbohidratos/efectos adversos , Ingestión de Energía/fisiología , Fructosa/administración & dosificación , Síndrome Metabólico/etiología , Obesidad/etiología , Animales , Biomarcadores/sangre , Dieta de Carga de Carbohidratos/métodos , Modelos Animales de Enfermedad , Dislipidemias/sangre , Metabolismo Energético/fisiología , Almidón/administración & dosificación , Porcinos , Porcinos Enanos , Aumento de Peso/efectos de los fármacos , Zea mays
4.
Food Funct ; 11(12): 10758-10773, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33231591

RESUMEN

Obesity-related metabolic syndrome has been linked with gut microbiome dysbiosis while dietary fibre (DF) and protein can modify the gut microbial ecosystem and metabolism. After 20-weeks of high-fat fructose-rich diet feeding for the development of obesity, forty-three 30-week old Göttingen Minipigs (31 ± 4.0 kg body weight) were allocated to one of the four diets with low or high DF and protein contents in a two by two factorial design and digesta were collected from the intestinal segments of minipigs after 8 weeks at libitum feeding. High DF content increased (P < 0.001) while high protein content decreased (P = 0.004) the content of non-starch polysaccharides (NSP) in all intestinal segments. Arabinoxylan (AX) as proportion of NSP was higher with high DF (P < 0.001) but decreased from the distal small intestine to the mid colon (P < 0.001). High DF increased the relative abundance of Blautia, Faecalibacterium and Peptococcus in the caecum, the mid colon and faeces, reduced the intestinal concentrations of total short-chain fatty acids (SCFA) (P = 0.020) and acetate (P = 0.011) but slightly increased butyrate pools in the large intestine (P≤ 0.050) compared to low DF. High protein increased the SCFA (P = 0.026) and propionate (P = 0.044) concentrations in the gut. High DF induced a lower increase in the BCFA concentration and proportion throughout the colon (P < 0.001). The butyrate concentrations in plasma from the jugular vein were increased with high DF diets (P = 0.031), whereas the propionate concentrations were increased (P < 0.001) and succinate were decreased (P = 0.001) with high protein diets compared with low protein diets. In conclusion, AX in the high DF diets was continuously degraded up to the mid-colon, associated with enriched butyrate-producing bacteria and slightly improved butyrate production, while protein fermentation was attenuated by high DF and high protein did not show prebiotic effects in this obese minipig model.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Carbohidratos de la Dieta/efectos adversos , Fibras de la Dieta/administración & dosificación , Proteínas en la Dieta/administración & dosificación , Ácidos Grasos Volátiles/metabolismo , Microbiota/efectos de los fármacos , Obesidad/metabolismo , Alimentación Animal , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Peso Corporal , Colon/metabolismo , Dieta , Heces/microbiología , Fermentación , Fructosa , Intestino Grueso/metabolismo , Masculino , Porcinos , Porcinos Enanos , Xilanos/metabolismo
5.
Br J Nutr ; : 1-13, 2020 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-32778179

RESUMEN

The effects of dietary fibre (DF) and protein on insulin response, lipidaemia and inflammatory biomarkers were studied in a model experiment with juvenile obese Göttingen minipigs. After 20 weeks feeding on a high-fat fructose-rich low-DF diet, forty-three 30-week-old minipigs (31·3 (sem 4·0) kg body weight) were allocated to low- or high-DF and -protein diets for 8 weeks in a 2 × 2 factorial design. High DF contents decreased (P = 0·006) while high protein increased (P < 0·001) the daily gain. High protein contents increased fasting plasma concentrations of glucose (P = 0·008), NEFA (P = 0·015), ghrelin (P = 0·008) and non-fasting LDL:HDL ratios (P = 0·015). High DF increased ghrelin (P = 0·036) and C-peptide levels (P = 0·011) in the non-fasting state. High protein increased the gene expression of fructose-bisphosphatase 1 in liver tissue (P = 0·043), whereas DF decreased fatty acid synthase expression in adipose tissue (P = 0·035). Interactions between DF and protein level were observed in the expression of leptin receptor in adipose tissue (P = 0·031) and of PPARγ in muscle (P = 0·018) and adipose tissue (P = 0·004). In conclusion, high DF intake reduced weight gain and had potential benefit on ß-cell secretory function, but without effect on the lipid profile in this young obese model. High dietary protein by supplementing with whey protein did not improve insulin sensitivity or lipidaemia, and combining high DF with high protein did not alleviate the risk of metabolic abnormalities.

6.
Metabolites ; 9(12)2019 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-31817081

RESUMEN

Sows suffering excess weight loss during lactation may delay weaning to estrus interval (WEI) and have a detrimental effect on subsequent reproductive performance, however, the underlying mechanism is not completely clear. Therefore, the goal of this study was to investigate physiological profiles manifested in plasma originating from high (HWL) and low lactational weight loss (LWL) sows. The plasma biochemical parameters, hormones, antioxidant parameters, and milk compositions were assessed. Furthermore, plasma metabolites were analyzed using ultrahigh-performance liquid chromatography/time-of-flight mass spectrometry in positive and negative ion modes. Results showed that HWL sows had a lower feed intake and higher lactational weight loss and prolonged WEI, but had similar litter performance and milk composition compared to LWL sows. These changes were associated with lower plasma insulin-like growth factor 1 and higher fibroblast growth factor 21 levels in the HWL sows. Moreover, HWL led to a severe oxidative stress and metabolic damage, as accompanied by excessive protein breakdown and lipids mobilization at weaning. Metabolomic analysis revealed differences in 46 compounds between HWL and LWL sows, and the identified compounds were enriched in metabolic pathways related to amino acids metabolism, fatty acids oxidation metabolism, bile acids biosynthesis, and nucleoside metabolism. These results provide the evidence for physiological mechanism in sows with excessive lactational weight loss that delayed the WEI. Metabolomic data provides essential information and gives rise to potential targets for the development of nutritional intervention strategies.

7.
PLoS One ; 13(8): e0202970, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30148866

RESUMEN

In pigs, the alpha-(1,2) fucosyltransferase (FUT1) gene has been highlighted for its properties in controlling the intestinal expression of enterotoxigenic E. coli (ETEC) F18 receptors; a pathogen causing edema disease and post-weaning diarrhoea. In this study, we hypothesized that pigs with different genotypes (ETEC F18 resistant (FUT1AA) versus susceptible (FUT1AG)) differed in following systemic and enteric responses: growth performance, plasma metabolic profiles, expression of candidate genes for intestinal mucosal homeostasis and immunity, number of selected bacteria and the concentration of short-chain fatty acids (SCFA) in faeces and digesta in piglets pre and post-weaning, and on the ETEC F18 adherence ex vivo. Genotype had the strongest impact on plasma metabolomic profile on day 7 and 28 of age. FUT1AG piglets had higher level of N-methyl-2-pyrrolidinone, hippuric acid, oxindole, and 3-oxo-5-beta-chol-7-en-24-oic acid on day 7, and a higher level of guanosine on day 28 than that in the FUT1AA piglets. FUT1AA piglets had a higher level of betaine on day 7 and 3-methylguanine on day 28. On day 34 of age, the FUT1AA pigs had higher levels of S-2-hydroxyglutarate, L-phenylalanine, tauroursodeoxycholic acid and an undetermined PC/LysoPC, while Ile Glu Phe Gly peptide and genistein 5-O-glucuronide, and PC (18:0/0:0) were at higher levels in the FUT1AG piglets. FUT1 genotype did not affect the growth performance and expression of candidate genes. FUT1AG piglets had a higher number of haemolytic bacteria in faeces and in digesta than that in FUT1AA at 34 days of age. The colonic acetic acid concentration was highest in FUT1AG piglets. FUT1 genotype may influence not only the expression of E. coli F18 receptors but could potentially impact the gut homeostasis and metabotype of piglets pre and post-weaning. Further investigations on the relation between FUT1 genotype and these aspects including the intestinal commensal microbiota will expand the knowledge on factors affecting the intestinal ecosystem.


Asunto(s)
Diarrea/inmunología , Infecciones por Escherichia coli/veterinaria , Fucosiltransferasas/genética , Microbioma Gastrointestinal , Mucosa Intestinal/inmunología , Metaboloma , Enfermedades de los Porcinos/inmunología , Animales , Diarrea/sangre , Diarrea/genética , Diarrea/microbiología , Escherichia coli Enterotoxigénica/aislamiento & purificación , Infecciones por Escherichia coli/sangre , Infecciones por Escherichia coli/genética , Infecciones por Escherichia coli/inmunología , Heces/microbiología , Genotipo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Porcinos , Enfermedades de los Porcinos/sangre , Enfermedades de los Porcinos/genética , Enfermedades de los Porcinos/microbiología , Destete
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...